10 of 11 people found the following review helpful
If you already know Bayes' Theorem wait for volume 2, 14 Dec. 2013
This review is from: Proving History: Bayes's Theorem and the Quest for the Historical Jesus (Hardcover)
As a mathematician, and atheist, with an interest in religious belief and the development of religious thought I was instantly attracted by the title of this book. First of all if, like me, you understand Bayes' Theorem, you will probably find reading this book very frustrating. Carrier is targetting a nonmathematical audience and so, often, takes several pages of natural language to describe things that can be expressed in a few lines of equations. On several occasions I found myself having to look back over previous pages to remind myself of the hypothesis or evidence Carrier was discussing  doubly frustrating when reading the Kindle version. Carrier also has a tendency to reemphasise points several times (sometimes to the extent it verges on a rant)  again if you got the point first time its frustrating. In fact, I found myself speedreading several pages at a time on several occasions. For me, the book could have been a third the length and not lost anything.
I do have to say that I contacted the author because I thought I'd spotted an error in one of his equations. Within 10 minutes of sending the email, I realised it wasn't an error. But the author emailed me back with a gracious reply, so kudos to him for that.
So if I=Book is interesting and M=mathematically trained, then I would set P(IM)=0.3. I did find some of the historical discussion (e.g. Matthew's tomb description being inspired by Daniel) interesting. But I was also disappointed that the application of BT to the historicity of Jesus is in a second volume  not an obvious assumption given the title of the book. Unfortunately, I cannot be 'not myself' therefore I cannot provide a value for P(I~M) no matter how hard I try with Bayes' Theorem (BT). This is the problem that Carrier has. He is trying to argue that BT provides the framework for a Historical Method as a analogue to the Scientific Method. But BT is neither axiomatic nor complete  it is a simple derivation from the law of conditional probability. So Carrier's Historical Method should really be (a) hypothesize; and, (b) evaluate the probability that the hypothesis is true. (b) replaces 'do an experiment' in the Scientific Method. This requires a complete probabilistic framework rather than just BT.
Carrier spends much of the first chapter explaining why we should only trust professional historians and then only some of them some of the time. A brave gambit given that he is about to step into the fields of mathematical logic and statistics  themselves professional endeavours. I'm sure he's had his fill of mathematicians and statisticians pointing that out to him. I don't actually mind, many breakthroughs do come at the boundaries between disciplines and if it means that historians and editorial boards of historical journals and conferences need to make themselves more numerate then that's a good thing. To all you historians out there, noone says "I can't do history" so don't come with the "I can't do maths".
Back to the book. It is essentially Bayes Theorem for the innumerate. Unfortunately, you won't get a sense of the importance of Bayes' Theorem in assessing witness testimony or drug trials or any of the other areas where it has made great strides. You also won't get a sense of it being applied to the quest for the historical Jesus  that's volume 2. Something that's not made clear in the Amazon summary. Overall, I applaud the author's advocacy of Bayes' Theorem. But if you have never heard of it before, this is not the book to convince you. By keeping the mathematical content to a bare minimum some of the examples and arguments become rather long and convoluted, so P(I~M) is unlikely to be 1.
Help other customers find the most helpful reviews
Was this review helpful to you?
Proving History: Bayes's Theorem and the Quest for the Historical Jesus 1616145595
Richard C. Carrier
Prometheus Books
Proving History: Bayes's Theorem and the Quest for the Historical Jesus
Welcome
If you already know Bayes' Theorem wait for volume 2
As a mathematician, and atheist, with an interest in religious belief and the development of religious thought I was instantly attracted by the title of this book. First of all if, like me, you understand Bayes' Theorem, you will probably find reading this book very frustrating. Carrier is targetting a nonmathematical audience and so, often, takes several pages of natural language to describe things that can be expressed in a few lines of equations. On several occasions I found myself having to look back over previous pages to remind myself of the hypothesis or evidence Carrier was discussing  doubly frustrating when reading the Kindle version. Carrier also has a tendency to reemphasise points several times (sometimes to the extent it verges on a rant)  again if you got the point first time its frustrating. In fact, I found myself speedreading several pages at a time on several occasions. For me, the book could have been a third the length and not lost anything.
I do have to say that I contacted the author because I thought I'd spotted an error in one of his equations. Within 10 minutes of sending the email, I realised it wasn't an error. But the author emailed me back with a gracious reply, so kudos to him for that.
So if I=Book is interesting and M=mathematically trained, then I would set P(IM)=0.3. I did find some of the historical discussion (e.g. Matthew's tomb description being inspired by Daniel) interesting. But I was also disappointed that the application of BT to the historicity of Jesus is in a second volume  not an obvious assumption given the title of the book. Unfortunately, I cannot be 'not myself' therefore I cannot provide a value for P(I~M) no matter how hard I try with Bayes' Theorem (BT). This is the problem that Carrier has. He is trying to argue that BT provides the framework for a Historical Method as a analogue to the Scientific Method. But BT is neither axiomatic nor complete  it is a simple derivation from the law of conditional probability. So Carrier's Historical Method should really be (a) hypothesize; and, (b) evaluate the probability that the hypothesis is true. (b) replaces 'do an experiment' in the Scientific Method. This requires a complete probabilistic framework rather than just BT.
Carrier spends much of the first chapter explaining why we should only trust professional historians and then only some of them some of the time. A brave gambit given that he is about to step into the fields of mathematical logic and statistics  themselves professional endeavours. I'm sure he's had his fill of mathematicians and statisticians pointing that out to him. I don't actually mind, many breakthroughs do come at the boundaries between disciplines and if it means that historians and editorial boards of historical journals and conferences need to make themselves more numerate then that's a good thing. To all you historians out there, noone says "I can't do history" so don't come with the "I can't do maths".
Back to the book. It is essentially Bayes Theorem for the innumerate. Unfortunately, you won't get a sense of the importance of Bayes' Theorem in assessing witness testimony or drug trials or any of the other areas where it has made great strides. You also won't get a sense of it being applied to the quest for the historical Jesus  that's volume 2. Something that's not made clear in the Amazon summary. Overall, I applaud the author's advocacy of Bayes' Theorem. But if you have never heard of it before, this is not the book to convince you. By keeping the mathematical content to a bare minimum some of the examples and arguments become rather long and convoluted, so P(I~M) is unlikely to be 1.
Euclidean Norm
14 Dec. 2013
 Overall: 5

Review Details
Top Reviewer Ranking: 64,393
