Learn more Shop now Learn more Shop now Shop now Shop now Shop now Shop now Shop now Shop now Shop now Shop now Learn More Shop now Learn more Click Here Shop Kindle Learn More Shop now Shop Women's Shop Men's


on 4 June 2017
If you like maths, as I do, you will like this book.The puzzles are intensely interesting, and the explanations will save you a lot of frustration. Makes you wonder what was in the heads of the people who pioneered this area of maths.
0Comment|Was this review helpful to you?YesNoReport abuse
on 14 September 2017
great book.
0Comment|Was this review helpful to you?YesNoReport abuse
on 12 June 2010
I have just had my first look at this book. It's a slim and dense volume, packed with maths, but not quite what I was expecting. It's more about constructability and existence theorems than some of the problems that I was expecting to see (Circles of Apollonius, Simpson's Line and other geometrical problems, for example).

Instead, a typical problem is stated in algebraic form rather than geometrical (e.g. "Prove that 1/4 + 1/16 + 1/64 ... = 1/3"). A reading of the relevant chapter of What is Mathematics?: An Elementary Approach to Ideas and Methods (Oxford paperbacks) for example would help you understand the relationship between geometrical constructions and fields, and this book would extend your knowledge if you wished.

In summary, a good book on the topic, but the topic is not necessarily what you may be expecting from the title.
0Comment| 18 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 22 July 1999
Bold has a gem of a book here. It's only a little bit over a hundred pages, but it's packed full of the great geometry problems that occupied the minds of the world's greatest thinkers for the past 2000 years.
The title describes the book perfectly. These really are "Famous Problems from Geometry" and he does indeed explain how to solve them.
The book has four major sections/chapters. He discusses in detail the three problems from antiquity (one section each): squaring a circle, doubling a cube, and trisecting an angle. Furthermore, he spends significant time with constructions of regular polygons (the fourth section) - which ones can be constructed and why. He also discusses which ones cannot be constructed and why.
The reader will be expected to understand concepts from Modern Algebra, particularly the concept of a Field. While Bold does spend time explaining what a Field is, his definition is quick and is assumed to be more of a refresher for someone who has already learned about them. Bold also has a section on Complex Numbers where he derives one of the formulas used later in the book. Again - this section is assumed to be a refresher on Complex Numbers. High School Geometry or Algebra students would have significant trouble understanding his explanations and proofs.
Bold provides problems for the reader to work along the way. These are problems that logically lead to the proof of the problem being studied. The problems are good. As a third year college student majoring in mathematics, I found the explanations/solutions to be sometimes hard to follow. He assumes a great deal about the reader's level of proficiency in math and in geometry. As a result, he liberally skips steps in proofs that are assumed to be "obvious."
If you're expecting simple proofs to these problems, you're not going to find them. If they were simple, they wouldn't have taken 2000 years to solve. But they are explained clearly here in terms that anyone with a college degree should be able to understand.
Overall, a superb book. A must have for anyone interested in the famous problems from the history of Geometry.
0Comment| 85 people found this helpful. Was this review helpful to you?YesNoReport abuse



Need customer service? Click here

Sponsored Links

  (What is this?)