Learn more Shop now Shop now Shop now Shop now Shop now Learn More Shop now Shop now Learn more Shop Fire Shop Kindle Ed Sheeran on Amazon Music Shop now Shop now

Customer Reviews

4.3 out of 5 stars
4.3 out of 5 stars
Format: Paperback|Change
Price:£9.98+ Free shipping with Amazon Prime
Your rating(Clear)Rate this item

There was a problem filtering reviews right now. Please try again later.

In this book, Lawrence Krauss addresses the problem of how the complex universe we observe arose out of `nothing'. In the Preface he briefly discusses the different meanings ascribed to this word by scientists, philosophers and theologians. Not surprisingly, there is little progress to be made here. Better to leave the philosophers and theologians to their word games and concentrate on the job of exploring its consequences in nature. That is what is done in this book.

Krauss starts with the standard history of the Big Bang: the evidence that supports it, and the need to introduce `dark matter' to reconcile measurements of galactic dynamics with the observed mass of their constituents. Dark matter is about 30% of the energy of the universe. Its nature is still unknown and is a very active field of research in particle physics. Then came the speculation that quantum fluctuations result indirectly in `empty space' being the source of an even greater energy, the so-called `dark energy', which would be about 70% of the total energy of the universe. The amount of mass/energy in the universe determines its geometry, and experiments in 1998 confirmed a `flat' universe (the meaning of this term is carefully explained) so the existence of dark energy is now inescapable. It implies a resulting force that causes the expansion of the universe to increase, rather than to decrease, as had been assumed. The origin and nature of dark energy is the greatest unsolved puzzle in physics today.

Krauss then considers how quantum fluctuations could have produced the conditions for a flat universe, since even a minute deviation from flatness at the time of the Big Bang would not produce the flat universe we see today. The answer is `inflation', the idea that the universe could have experienced a super-rapid expansion for a very short time after the Big Bang, the only viable explanation of the observed flatness and extreme homogeneity of the universe. He also explains how inflation `freezes' these fluctuations, which later emerge as the minute matter inhomogeneity that has been observed by experiments like WMAP and which later, under the influence of gravity, led to the formation of galaxies, stars and eventually us. Hence the title of the book.

The most startling consequence of living in a flat universe is that as it continues to expand, galaxies will eventually have velocities that exceed the velocity of light (the velocity is that of the expansion of space, not particles travelling through space, so no problems with special relativity) and will no longer be visible from any other galaxy. Paradoxically, this means that any future astronomers will not longer have the evidence to deduce that they are part of an expanding universe and so `starting from scratch' they could well come to an entirely different conclusion. Krauss gives a very interesting discussion of the extraordinary fact that we live in a relatively short time window (in terms of cosmological time) where it is possible to make the deductions we have about the universe, because `now' is the only time when the energy in empty space is comparable to the energy density in matter. Had the dark energy been even only 50 times bigger than at present, galaxies would not have formed and we would not exist. This leads on the ideas of multiple universes and the anthropic principle, which is the cause of so much controversy in physics today. Along the way he cannot resist gently prodding string theories and `theories of everything' (or `theories of anything' as he calls them).

The known scientific story essentially ends here, but the book continues with three more chapters. The first returns to the `something from nothing' question and essentially re-emphasizes how our knowledge of the universe has been obtained purely from the laws of physics and without the need for divine intervention. The second explores how a quantum theory of gravity might, via quantum fluctuations, produce a stable universe, with matter and radiation, from a `nothing' that did not include even space itself, and that such a universe would necessarily be flat, just as our own universe. This is highly speculative and the matter-antimatter asymmetry problem is far from solved. The last chapter tackles head-on the argument that there still needs to be a deity to determine the laws of physics - a First Cause. Here he discusses even more speculative ideas that imply universes can arise without the necessity of the laws of physics, the latter being random. His conclusion is that theology and philosophy are incapable of answering fundamental questions and that only by using the scientific method can we let nature tell us its secrets: `God is either unnecessary, or at best redundant'.

This book gives a very clear discussion of some of the most exciting ideas in cosmology today, and gives a real feeling for what enormous strides have been made in understanding the origins of the universe, as well as the unanswered questions. But the discussion is necessarily sometimes quite technical, with terms and concepts introduced without much explanation. This could mean a steep learning curve for someone without at least some previous acquaintance with the material, although there is an excellent index to enable one to navigate around the book. The poor quality of the illustrations does not help. Some of these would have been more impressive and easier to understand had they been in colour. Given the high price of £17.99 for a book of less than 190 pages (published by the ironically named Free Press), surely this could have been possible. Despite these minor reservations, this is a superb book.
2828 Comments| 131 people found this helpful. Was this review helpful to you?YesNoReport abuse
VINE VOICEon 22 February 2012
Why is there something rather than nothing? What do we even mean when we talk of nothing?

In this book, the author, expanding on his popular YouTube video, describes how developments in cosmology over the last 20 years or so have helped further our understanding of the origin of our universe as well as where it is likely to be heading and how "something" may indeed have come from "nothing". We may, as the author points out, also be extremely fortunate to be living in what is a (cosmologically speaking) brief window in the history of the universe in which the evidence for the origin of the universe is relatively easily observed and deduced.

Generally speaking, I found this to be as well-written and lucid account of our current understanding of our universe, its origins and future as any that I've come across. While the author in the main does a good job of getting across some complex ideas it isn't always an easy read and is tough going in places. I found myself on several occasions thinking "No. Don't get that!" and heading back to the start of that particular passage. It is worth sticking with though and does reward the patient reader, as I can testify!!
55 Comments| 71 people found this helpful. Was this review helpful to you?YesNoReport abuse
The particle physicist and cosmologist author is an engaging popular science writer. The author addresses the general reader who has an interest in cosmology while the text does not contain a single mathematical formula. The author takes us into a fascinating journey during which he weaves the arguments that led astrophysicists and cosmologists to develop a compelling scenario of a universe being created from virtually nothing, precisely dating its creation at 12.72 billion years ago.

The author wisely advises the reader quoting Jacob Bronowski that the nature of the universe will not be the result of hope, revelation, or pure thought;it will emanate from probing its nature and we have to accept it as it is whether we like it or not and even when it runs counter to our intuition or defies our imagination.

I find it productive to commence the review proper by defining what the author means by the term 'nothing' because in science even 'nothing' has to be defined. In the context of the book it means empty space with energy associated with it, even in the absence of any matter or radiation and in which the laws of nature such as quantum mechanics and general relativity operate. In this sense empty space is complicated. It is teeming with virtual particles that pop in and out of existence in a time so brief we cannot see them directly. Virtual particles are manifestations of a basic property of quantum systems. These 'quantum fluctuations' imply something about the quantum world:nothing always produces something, if only for an instant;or as cosmologist and Nobel prize laureate, Frank Wilczek aptly put it 'nothing' is unstable.

We can outline the scenario of creation as follows:we can speculate that the universe began in the most symmetrical state possible and that in such a state no matter existed;the universe was a vacuum. A second state existed, and in it matter existed. The second state had slightly less symmetry, but was also lower in energy. Eventually a patch of less symmetrical state appeared and as visualized by astrophysicist Alan Guth and permitted by general relativity inflated or expanded exponentially (the Big Bang) so even the tiniest region at early times could could quickly encompass a size more than large enough to contain our whole universe today. In fact we have a notion for both the enormity of the expansion and the corresponding time frame:it took a fraction of a second to go through twenty-eight orders of magnitude. According to this picture, when inflation ends, the energy stored in empty space gets turned into an energy of real matter and radiation, creating effectively the traceable beginning of our Big Bang expansion. We say traceable beginning because inflation effectively erases any memory of the sate of the universe before it began.

There are three main observational pillars that led to the empirical validation of the Big Bang:the observed Hubble expansion (as evidenced by the red-shifted radiation from distant galaxies);the observation of the cosmic background radiation (the afterglow of the Big Bang);and the observed agreement between the abundance of light elements - hydrogen, helium, and lithium - we have measured with the amounts predicted to have been produced during the first few minutes of the history of the universe.

We have already noted that the slight asymmetry between matter and antimatter led to the creation of the universe. If matter and antimatter were exactly equal they would have mutually annihilated with radiation as the only result. Even if the asymmetry were 1 part in a billion there would be enough matter left over to account for everything we see in the universe today. In fact an asymmetry of 1 part in a billion or so is precisely what was called for, because there are roughly 1 billion photons in the cosmic microwave background radiation for every proton in the universe.

A word might be in order on the mass composition of the universe. It might come as a surprise to many that the visible universe that is galaxies, stars, planets, and cosmologists who speculate about the nature of the universe comprise a mere 1 percent of its mass while adding dark matter in and around galaxies still amounts to 30 percent of the universe mass;a commanding 70 percent of its mass belongs to a mysterious dark energy which permeates uniformly empty space, is believed to have remained constant through time while it bears an uncanny resemblance to Einstein's cosmological constant.

I find it appropriate to conclude the review by convincing the skeptical reader of the reality of virtual particles. We have mentioned earlier in the review that virtual particles pop in and out of existence in a time so short we cannot see them directly. But how can we be sure they are real? The answer is through their effects and the validation follows:physicists can use Dirac's equation to calculate to an amazing high precision , the impact on the spectrum of hydrogen of all possible virtual particles that may exist intermittently in the vicinity. And when we do, we come up with the best, most accurate prediction in all of science. Using Dirac's equation, and the predicted existence of virtual particles, we can calculate the value of atomic parameters and compare them with observation and obtain an amazing agreement of about 1 part in a billion or better! The evidence for the existence of virtual particles is incontrovertible.

I leave the reader in suspense to find for himself the frightening fate of our universe in the distant future, say two trillion years from now.
66 Comments| 37 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 20 July 2015
The question of why there is 'something' rather than 'nothing' seems to me to be the most important and fundamental question that one can ask, because 'nothing' seems easy to achieve, but a complex universe equipped with laws of physics etc. would appear to require a lot of design work and effort. I bought this book in the hope to get some insight into how Something could arise from Nothing.
Firstly, the author seems have some axes to grind. He has clearly been in disagreements with Theists and/or Creationists and using this the book to take a shot back at them. Also, the author seems to have a secondary (or perhaps not so secondary) objective in documenting his own achievements in the field of cosmology. One can't help feeling he is trying to position himself for posterity.
On the question of 'something from nothing'. I did not feel much real progress was made on answering this question: The book illustrates that, in the light of scientific discoveries, that what people used to think of as nothing (i.e. empty space) is boiling with quantum activity on very small scales. It is therefore far from Nothing. The basic question that the book attempts to answer is simply pushed back one level further down. That is, the question becomes 'why do there exist laws of physics and quantum mechanics rather than nothing'. The author makes a lot of wordplay around this point but, for me, does not hide the fact that the book is rather disingenuously promising something that it does not deliver. Kind of a 'slight of hand' I'd say. The bottom line for me is that it remains just as incredible and awe-inspiring as it always did that there is Something rather than Nothing. This book does not change anything about that. What is does do, is to put forward the author's argument for how our visible Universe could have arisen from not very much, given pre-existing laws of physics (which of course are quite something).
0Comment| 9 people found this helpful. Was this review helpful to you?YesNoReport abuse
TOP 1000 REVIEWERon 21 October 2012
This was a difficult book. Not on account of its style - it's well written and I never lost interest throughout - but on account my difficulty in comprehending some of the radically counter intuitive ideas presented therein. Whether other readers suffer from the same handicaps as I did will depend on their degree of expertise in this subject or whether they are better capable than I am of grasping the ideas in this book.

Let me tell you from a lay perspective what I did manage to grasp. The book goes over some familiar ground, the nature of the universe has cosmology has revealed to us over the past 100 years - how we can tell that the universe is as old as it is and the by now familiar problem of dark energy and matter. The fact that the atoms in your body were forged countless millennia ago in the nuclear furnaces of long dead stars and other such wonders are covered well. He also offers a fascinating prognosis on the universe's eventual fate - now is a great time to be a cosmologist, because in a 100 Billion years time, space will expand so fast that it will physically haul galaxies along with it faster than the speed of light. That means we will no longer be able to observe other galaxies and our galaxy will appear to be alone in the universe.

But what does Krauss mean by nothing? Well, he seems to be using it in two senses. The first is empty space. It is not in fact empty. What we think is empty space is in fact mass, it has energy, it produces particles which seemingly spring from nowhere and disappear back into nowhere. Nothing in empty space weighs something because of quantum effects - particles constantly bubbling up from seemingly nowhere. That goes for sub atomic level too, 90 percent of a mass of a proton is empty space! And of course you're atoms are made from protons. That means much of your mass is empty space! Can you test this? Apparently so - you can actually weigh the universe and all the matter in it, visible and invisible.

But what about a universe from nothing, the second sense of the word, the time before there were was anything in the universe - galaxies, planets, stars and astronomers to observe them? The answer is this: the attractive effects of gravity cancel out expansive energy generated by visible and invisible matter. The two forces cancel each other out and produce a zero - this is the `number' of the universe. This allows a universe to spring from nothing. No deity required. Why is there something from nothing then? Well it has to be, quantum mechanics will always give something out of nothing. This is something that as a layman I find fantastical but the fact that it's strange should not be reason for me or any layperson to dismiss this out of hand. Science is full of strange things. Gravity and electromagnetism are real forces but neither can be smelt, seen, heard or tasted. But they exist and they have real effects. They can be detected and their forces harnessed. It seems mind-boggling but science does not come naturally to us. It is by its nature counter-intuitive.

What does this mean for those who believe in a creator deity? Can you still say that god laid down the laws of physics? In principle you can say this and this book is not the last word on this question. But science shows that the laws of physics can give rise to things like clouds and rainbows without any need for a creator to intervene. Ditto with the universe generally. Stars are being born and die all the time without any creator lighting the blue touch paper. And particles can bubble out of nowhere without a god bringing them forth. The laws of physics allow this. But a creator that merely wound the universe up like clockwork and simply let it get on with itself is probably not the sort of deity that many devotees of the monotheistic religions would consider worthy of worship. Such a god has foresaken his creation - one that is doomed to die a heat death in the very long run. Science will doubtless change the way we look at the universe but one thing it won't do is allow a god who can actually intervene and override the laws of nature.

There will of course still be mystery. But, as Krauss has said elsewhere, science specifies what uncertainly is - unlike religious dogma that asserts to know the nature of reality without bothering to check it out first. Still, while there is mystery, there is always the possibility of appealing to mystery, to posit a god of the gaps. However inadequate this argument is, it is always an option - if a somewhat desperate one - as long as mystery exists. So this book won't herald the final overthrow of organised religion but it won't offer any crumbs of comfort, either.

Despite being a difficult book, one that needs to be read and re-read, this is a fascinating portrait of the nature of scientific discovery and advance, concerning the question of why the universe is the way it is.
1313 Comments| 48 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 18 January 2012
I've been waiting for this book to be released since I found the video lecture six months ago I was very excited when I received the book and read it in two days, (I will give the Youtube link in the comments if you don't want to type 'Universe from nothing' and find the richarddawkinsdotnet link). If you have seen the lecture than you have a good idea how great the book is. Much of the information is the same, there is more added. There is much more history of the ideas presented in the book, the first two chapters deal with the history of astronomy and cosmology.

I never expected the book to be as funny as it is: "I like to say that while antimatter may seem strange, it is strange in the sense that Belgians are strange."
Belgians may be an easy target to pick on for humour, and he does a good job picking on religion without distracting from the science. There is a few paragraphs that are directed to atheists about how religion gets in the way of science and thinking in general but it definitely doesn't get in the way. The book is only made stronger for for adding controversy - "Forget Jesus, the stars died so you could be born" -

I loved his comedy:
"I want to emphasize that this theory is not as trivial as the theological musing of Saint Thomas Aquinas about whether several angels could occupy the same place, an idea that was derided by later theologians as fruitless speculations on how many angels could fit on the point of a needle - or most popularly, on the head of a pin. Aquinas actually answered this question himself by saying that more than one angel could not occupy the same space... And if they were bosonic quantum angels, he would have been wrong in any case."

I recommend watching the video lecture first (if it is still online), if you enjoyed that and want to know more buy the book.
0Comment| 53 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 10 January 2012
A fabulous book as you'd expect from Lawrence Krauss. "Why is there something and not nothing?" is a question that creationists frequently ask when debating anyone who bases their understanding of the universe on evidence and reasoning. For a long time Science has held up its hands and said "we're not sure" - unlike the creationists who think they already have an answer. This book is a great step forward in one of the biggest conversations in physics and cosmology.
22 Comments| 44 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 9 December 2014
A very interesting read, plugging an important gap in popular science books, and well worth the price.

The reason I wouldn't give it 5 stars is because I think some of concepts could have been better explained, and I had a lot of questions firing in my head as I read the book, which weren't answered. If you read a book by Richard Dawkins, he explains everything in almost too much detail (and I find myself thinking 'yeah, yeah, I got it' and skipping ahead) - in this book it's the opposite.

Perhaps I'm being a bit harsh in that our brains have not evolved to be able to visualize quantum mechanics, and it can only really be understood by the mathematics - the level of which is beyond the majority of the population.
11 Comment| 12 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 2 May 2012
Many years ago, I read "Dr Zhivago" - TWICE. I had to read it twice once to plough through all the Russian names and relationships, and then again to actually enjoy the story.

This book was a bit like that, on a smaller scale. The narrative style is ok, but definitely a bit 'rougher' than other writers, such as Richard Dawkins, and the 'plot' doesn't always flow very smoothly either, with the result that I was sometimes casting about trying to connect a conclusion with a preceding argument. Plus there were a few places where I felt he might have left the word 'not' out of a sentence, or where he seemed to leapfrog a point, leaving me re-reading several times to check what he was actually saying (I also felt there were some US idioms that momentarily stalled me several times).

And having put in an excellent quote from Darwin, later in the book he seemed to totally misconstrue what (I think) Darwin meant. Maybe unintentionally, maybe for effect.

I felt that his main aim was to register his bit about atheism v religion, though he was reasonably constrained. But even here I think he missed the point on a few occasions.

Still, a readable and enjoyable book (second time through, anyway!) with some humour, which covered the current state of cosmology fairly well as far as I could see, especially for anyone coming new to the discussion. But not awfully original.
11 Comment| 23 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 19 September 2014
The book was well written and reasonably understandable for a non-mathematician but the author's contention that the universe came from nothing appeared to be based on transitory phenomena and did not substantiate his argument. It seemed born of desperation to disprove the existence of God at all costs.
0Comment| 2 people found this helpful. Was this review helpful to you?YesNoReport abuse

Sponsored Links

  (What is this?)