FREE Delivery in the UK.
Only 1 left in stock (more on the way).
Dispatched from and sold by Amazon. Gift-wrap available.
Remarks on the Foundation... has been added to your Basket
+ £2.80 UK delivery
Used: Very Good | Details
Condition: Used: Very Good
Comment: Expedited shipping available on this book. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Have one to sell?
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See all 2 images

Remarks on the Foundation of Mathematics Paperback – 16 Apr 1981

3.5 out of 5 stars 2 customer reviews

See all formats and editions Hide other formats and editions
Amazon Price
New from Used from
Paperback
"Please retry"
£27.99
£21.47 £11.99
Note: This item is eligible for click and collect. Details
Pick up your parcel at a time and place that suits you.
  • Choose from over 13,000 locations across the UK
  • Prime members get unlimited deliveries at no additional cost
How to order to an Amazon Pickup Location?
  1. Find your preferred location and add it to your address book
  2. Dispatch to this address when you check out
Learn more
£27.99 FREE Delivery in the UK. Only 1 left in stock (more on the way). Dispatched from and sold by Amazon. Gift-wrap available.
click to open popover

Special Offers and Product Promotions


Frequently Bought Together

  • Remarks on the Foundation of Mathematics
  • +
  • On Certainty: Parallel Text (Set Books / Open University)
  • +
  • Culture and Value Revised Edition
Total price: £69.57
Buy the selected items together

Enter your mobile number or email address below and we'll send you a link to download the free Kindle App. Then you can start reading Kindle books on your smartphone, tablet, or computer - no Kindle device required.

  • Apple
  • Android
  • Windows Phone

To get the free app, enter your mobile phone number.




Product details

  • Paperback: 448 pages
  • Publisher: John Wiley & Sons; 3rd Revised edition edition (16 April 1981)
  • Language: English
  • ISBN-10: 0631125051
  • ISBN-13: 978-0631125051
  • Product Dimensions: 14 x 2.6 x 21.6 cm
  • Average Customer Review: 3.5 out of 5 stars  See all reviews (2 customer reviews)
  • Amazon Bestsellers Rank: 306,951 in Books (See Top 100 in Books)

Product Description

Review

" Wittgenstein's work remains, undeniably, now, that off one of those few philosophers who will be read by all future generations. It is by far the richest twentieth-century source of philosophical ideas, which it will take us more decades yet properly to apprehend and to absorb; despite the difficulty with which his work presents the reader, there is nothing that is likely to be more rewarding. The philosophy of mathematics was one of his earliest and most persistent preoccupations.... The present edition... is a selection from seven distinct pieces of writing by Wittgenstein, with none of which he was content. For all that, it demands the most thorough attention from anyone interested in his philosophy, because the subject occupied so important a place in his thought." - "Nature"

& quot; Wittgenstein's work remains, undeniably, now, that off one of those few philosophers who will be read by all future generations. It is by far the richest twentieth-century source of philosophical ideas, which it will take us more decades yet properly to apprehend and to absorb; despite the difficulty with which his work presents the reader, there is nothing that is likely to be more rewarding. The philosophy of mathematics was one of his earliest and most persistent preoccupations.... The present edition... is a selection from seven distinct pieces of writing by Wittgenstein, with none of which he was content. For all that, it demands the most thorough attention from anyone interested in his philosophy, because the subject occupied so important a place in his thought.& quot; - Nature

"Wittgenstein's work remains, undeniably, now, that off one of those few philosophers who will be read by all future generations. It is by far the richest twentieth-century source of philosophical ideas, which it will take us more decades yet properly to apprehend and to absorb; despite the difficulty with which his work presents the reader, there is nothing that is likely to be more rewarding. The philosophy of mathematics was one of his earliest and most persistent preoccupations.... The present edition... is a selection from seven distinct pieces of writing by Wittgenstein, with none of which he was content. For all that, it demands the most thorough attention from anyone interested in his philosophy, because the subject occupied so important a place in his thought."- "Nature" --This text refers to an out of print or unavailable edition of this title.

From the Back Cover

This substantially revised edition of Wittgenstein′s Remarks on the Foundations of Mathematics contains one section, an essay of fifty pages, not previously published, as well as considerable additions to others sections. In Parts I, II and III, Wittgenstein discusses amongst other things the idea that all strict reasoning, and so all mathematics, are built on the ′fundamental calculus′ which is logic. These parts give the most thorough discussion of Russell′s logic. He writes on mathematical proof and the question of where the proofs of mathematics get their force and cogency, if they are not reducible to proofs in logic. Thsi leads him to discuss′contradiction in mathematics′ and ′consistency proofs′. He works against the view that there is a sharp division between ′grammatical propositions′ and ′empirical prepositions′. He asks us at one point to imagine a people who made no distinction between the applied mathematics and pure mathematics, although they counted and calculated. Could we say they had proofs? Here is a feature of his method which becomes more imporatnt; what Wittgenstein calls, at least half seriously, ′the anthropological method in philosophy′. This emerges in Parts V, VI and VIII.


In Part VI, published here for the first time, Wittgenstein brings togeher the view that in mathematics proofs ae ′concept forming′ and the view that language and logic and mathematics ′presuppose′ common ways of acting and of living among the people who give tham and are convinced by them. Part VIII now has a fuller discussion of difficulties in the notion of ′following a rule′ in calculation and the notion of logical necessity.

See all Product Description

Customer Reviews

3.5 out of 5 stars
5 star
1
4 star
0
3 star
0
2 star
1
1 star
0
See both customer reviews
Share your thoughts with other customers

Top Customer Reviews

Format: Paperback Verified Purchase
5 Stars for content
1 star for he lazy cheapskate publishers
the quality of print is awful
blotchy tiny bold text makes for an awful reading experience
what a rip-off
also such a shame no kindle edition
Wittgenstein is true genius and i cant get enough of his writings
Comment Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse
Format: Paperback
But what if an otherwise reputable seller, one I have used on many occasions and which I often consult to find a market price, tries to sell me an object for, say, ten times its price elsewhere? Might I furrow my eyebrows in such and such a way typical of puzzlement and speculate that they have misplaced the decimal point or that they have used the wrong calculation when converting the price from one currency to another? That is not important. Surely in this case, and in others like it, one acts, and goes to another seller.
Comment 3 people found this helpful. Was this review helpful to you? Yes No Sending feedback...
Thank you for your feedback.
Sorry, we failed to record your vote. Please try again
Report abuse

Most Helpful Customer Reviews on Amazon.com (beta)

Amazon.com: 5.0 out of 5 stars 2 reviews
37 of 38 people found the following review helpful
5.0 out of 5 stars Some remarks on Remarks... 30 April 2000
By Amazon Customer - Published on Amazon.com
Format: Paperback
If you are interested in the philosophy of mathematics, this is the book for you! No special knowledge of mathematics or philosophy is needed to read and understand this book. Some prior experience with philosophy would be helpful, though,just to get you used to discussing philosophy. Some reading of other philosophy books by Wittgenstein, especially Philosophical Investigations or On Certainty would be helpful, to get you used to Wittgenstein's unusual style of writing. But if you haven't read any philosophy before reading Remarks on the Foundations of Mathematics, don't worry, it isn't necessary.
Wittgenstein seems to think that mathematics is a language as German, or French, or English are languages. Mathematics is a human language, he says.He discusses the way we learn mathematics and also what constitutes proofs of mathematical theorems.
This is an extremely interesting book to read, but it is not something you can sit down and read in one sitting. It will take a few sittings to get through it all. For myself, this was because I had to stop frequently and think of the implications of what Wittgenstein was saying. For example, he says that the mathematiciam creates essences. I had to re-evaluate my conception of mathematics after reading this statement.
Overall, this was a very enjoyable book to read and it changed the way I view the world of mathematics.
1 of 1 people found the following review helpful
5.0 out of 5 stars THE PHILOSOPHER’S THOUGHTS ON LOGIC AND MATHEMATICAL THEORY 3 Feb. 2015
By Steven H Propp - Published on Amazon.com
Format: Paperback
Ludwig Josef Johann Wittgenstein (1889-1951) was an Austrian-British philosopher whose books such as Tractatus Logico-Philosophicus and Philosophical Investigations are among the acknowledged “classics” of 20th century philosophy. Born into a wealthy family, he gave all of his inheritance away, served in the Austrian Army during World War I, taught schoolchildren in remote Austrian villages, but ultimately taught at Cambridge for many years. The Tractatus was the only book he published during his lifetime, but his papers have been posthumously edited, and notes of lectures taken by his students have been transcribed, and have resulted in many published books, such as Lectures & Conversations on Aesthetics, Psychology, & Religious Belief, Philosophical Grammar, Philosophical Remarks, The Blue and Brown Books, Remarks on the Philosophy of Psychology, Remarks on Colour, Zettel, etc.

The Editor’s Preface states, “The remarks on the philosophy of mathematics and logic, which are published here, were written in the years 1937-1944. After that time Wittgenstein did not again return to this topic. He had written a great deal on this subject in the period 1929 to roughly 1932, part of which we hope to publish later… This earlier work belongs to a stage in Wittgenstein’s development which is still fairly close to the Tractatus Logico-Philosophicus. The remarks presented in THIS volume are of a piece with the thought of Philosophical Investigations.”

He says, “There is a transition from one proposition to another VIA other propositions, that is, a chain of inferences… There is nothing occult about this; it is s derivation of one sentence from another according to a rule… We call it a ‘conclusion’ when the inferred proposition CAN in fact be derived from the premise… Now what does it mean to say that one proposition CAN be derived from another by means of a rule? Can’t anything be derived from something by means of SOME rule---or even according to any rule, with a suitable interpretation? What does it mean for me to say e.g.: this number can bed got by multiplying these two numbers?” (I, §6 & 7)

He observes, “I might also say as a result of the proof: ‘From now on an H and a P are called ‘the same in number.’ Or: this proof doesn’t EXPLORE the essence of the two figures, but it does express what I am going to count as belonging to the essence of the figures from now on. I deposit what belongs to the essence among the paradigms of language. The mathematician creates ESSENCE.” (§32)

He argues, “How is it established which pattern is the multiplication of 13 X 13? Isn’t it DEFINED by the rules of multiplication? But what if, using these rules, you get different results today from what all the arithmetic books say? Isn’t that possible?---‘Not if you apply the rules as THEY do.’ Of course not! But that is a mere pleonasm… Well, it never in fact happens that somebody who has learnt to calculate goes on obstinately getting different results… But if it should happen, then we should declare him abnormal, and take no further account of his calculation.” (§112)

He comments, “The laws of logic are indeed the expression of ‘thinking habits’ but also of the habit of THINKING. That is to say that they can be said to shew: how human beings think, and also WHAT human beings call ‘thinking’… The propositions of logic are ‘laws of thought,’ ‘because they bring out the essence of human thinking’---to put it more correctly: because they bring out, or shew, the essence, the technique, of thinking. They shew what thinking is and also shew kinds of thinking.” (§131, 133)

He notes, “In philosophy it is always good to put a QUESTION instead of an answer to a question. For an answer to a philosophical question may easily be unfair; disposing of it by means of another question it is not. Then should I put a question here, for example, instead of the answer that the arithmetical proposition cannot be proved by Russell’s method?” (II, §5)

He argues, “I want to say: with the logic of Principia Mathematica it would be possible to justify an arithmetic in which 1000 + 1 = 1000; and all that would be necessary for this purpose would be to doubt the sensible correctness of calculations. But if we do not doubt it, then it is not our conviction of the truth of logic that is responsible. When we say in a proof” ‘This MUST come out’---then this is not for reasons that we do not SEE. What convinces us---THAT is the proof; a configuration that does not convince us is not the proof, even when it can be shewn to exemplify the proved proposition. That means: it must not be necessary to make a physical investigation of the proof-configuration in order to shew us what has been proved.” (§39)

He goes on: “We incline to the belief that LOGICAL proof has a peculiar, absolute cogency, deriving from the unconditional certainty in logic of the fundamental laws and the laws of inference. Whereas propositions proved in this way can after all not be more certain than is the correctness of the way those laws of inference are APPLIED. The logical certainty of proofs… does not extend beyond their geometrical certainty.” (§43)

He states, “EXPERIENCE teaches us that we all find this calculation correct. We start ourselves off and get the result of the calculation. But now… we aren’t interested in having---under such and such conditions say---actually produced this result, but in the pattern of our working; it interests us as a convincing, harmonious pattern---not, however, as the result of an experiment, but as a PATH.” (§69)

He notes, “We went sleepwalking along the road between abysses. But even if we now say: ‘Now we are awake’---can we be certain that we shall not wake up one day? (And then say: so we were asleep again.) Can we be certain that there are no abysses now that we do not see? But suppose I were to say: The abysses in a calculus are not there if I don’t see them! Is no demon deceiving us at present? Well, if he is, it doesn’t matter. What the eye doesn’t see the heart doesn’t grieve over.” (§78)

He comments: “‘Only the proof of consistency shews me that I can rely on the calculus.’ What sort of proposition is it, that only THEN can you rely on the calculus? But what if you do rely on it WITHOUT that proof! What sort of mistake have you made?” (§84)

He says, “Consider also the rule which forbids one digit in certain places, but otherwise leaves the choice open. Isn’t it like this? The concepts of infinite decimals in mathematical propositions are not concepts of series, but of the unlimited technique of expansion of series.” (IV, §19)

He asserts, “Everything I say really amounts to this, that one can know a proof thoroughly and follow it step by step, and yet at the same time not UNDERSTAND what it was that was proved. And this in turn is connected with the fact that one can form a mathematical proposition in a grammatically correct way without understanding its meaning. Now when does one understand it? I believe: when one can apply it.” (§25)

He contends, “The curse of the invasion of mathematics by mathematical logic is that now any proposition can be represented in a mathematical symbol, and this makes us feel obligated to understand it. Although of course this method of writing is nothing but the translation of vague ordinary prose.” (§46)

He concludes, “The philosopher is the man who has to cure himself of many sicknesses of the understanding before he can arrive at the notions of the sound human understanding. If in the midst of life we are in death, so in sanity we are surrounded by madness.”(§53)

As always, Wittgenstein’s ideas are provocative, stimulating, and often profound. This book will be of great value to anyone studying his thought (particularly in its less-“linguistic” manifestations).
Were these reviews helpful? Let us know


Feedback