• RRP: £63.99
  • You Save: £6.40 (10%)
FREE Delivery in the UK.
In stock.
Dispatched from and sold by Amazon. Gift-wrap available.
Pattern Recognition and M... has been added to your Basket

Dispatch to:
To see addresses, please
Or
Please enter a valid UK postcode.
Or
+ £0.00 UK delivery
Used: Like New | Details
Sold by Wordery
Condition: Used: Like New
Comment: Receive this fine as new book in 4-5 working days. Shipped from our UK supplier, via Royal Mail. We do not ship to Denmark.
Have one to sell?
Flip to back Flip to front
Listen Playing... Paused   You're listening to a sample of the Audible audio edition.
Learn more
See all 3 images

Pattern Recognition and Machine Learning (Information Science and Statistics) Hardcover – 1 Feb 2007

4.3 out of 5 stars 28 customer reviews

See all 4 formats and editions Hide other formats and editions
Amazon Price
New from Used from
Hardcover
£57.59
£43.31 £45.99
Promotion Message Prime Students get £10 off on £40 spend 2 Promotion(s)

Note: This item is eligible for click and collect. Details
Pick up your parcel at a time and place that suits you.
  • Choose from over 13,000 locations across the UK
  • Prime members get unlimited deliveries at no additional cost
How to order to an Amazon Pickup Location?
  1. Find your preferred location and add it to your address book
  2. Dispatch to this address when you check out
Learn more

Save an extra 10% on 1000s of textbooks with Prime Student
From 2 December, 2016, Prime Student members will receive an extra 10% off 1000s of selected textbooks. The Offer will be automatically applied to your order at checkout. This Offer ends at 23:59pm BST on 1 December, 2017. Terms and conditions apply. Learn more
£57.59 FREE Delivery in the UK. In stock. Dispatched from and sold by Amazon. Gift-wrap available.
click to open popover

Special offers and product promotions

  • Prime Student members get £10 off with a spend of £40 or more on Books. Enter code SAVE10 at checkout. Enter code SAVE10 at checkout. Here's how (terms and conditions apply)
  • Prime Student members get an extra 10% off this product Here's how (terms and conditions apply)

Frequently bought together

  • Pattern Recognition and Machine Learning (Information Science and Statistics)
  • +
  • Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning Series)
  • +
  • Deep Learning (Adaptive Computation and Machine Learning Series)
Total price: £181.49
Buy the selected items together

Enter your mobile number or email address below and we'll send you a link to download the free Kindle App. Then you can start reading Kindle books on your smartphone, tablet, or computer - no Kindle device required.

  • Apple
  • Android
  • Windows Phone

To get the free app, enter your mobile phone number.



Product details

  • Hardcover: 738 pages
  • Publisher: Springer; Newer (Colored) edition (1 Feb. 2007)
  • Language: English
  • ISBN-10: 0387310738
  • ISBN-13: 978-0387310732
  • Product Dimensions: 18.4 x 4.4 x 23.5 cm
  • Average Customer Review: 4.3 out of 5 stars 28 customer reviews
  • Amazon Bestsellers Rank: 10,977 in Books (See Top 100 in Books)
  • Would you like to tell us about a lower price?
    If you are a seller for this product, would you like to suggest updates through seller support?

  • See Complete Table of Contents

Product description

Review

From the reviews:

"This beautifully produced book is intended for advanced undergraduates, PhD students, and researchers and practitioners, primarily in the machine learning or allied areas...A strong feature is the use of geometric illustration and intuition...This is an impressive and interesting book that might form the basis of several advanced statistics courses. It would be a good choice for a reading group." John Maindonald for the Journal of Statistical Software

"In this book, aimed at senior undergraduates or beginning graduate students, Bishop provides an authoritative presentation of many of the statistical techniques that have come to be considered part of ‘pattern recognition’ or ‘machine learning’. … This book will serve as an excellent reference. … With its coherent viewpoint, accurate and extensive coverage, and generally good explanations, Bishop’s book is a useful introduction … and a valuable reference for the principle techniques used in these fields." (Radford M. Neal, Technometrics, Vol. 49 (3), August, 2007)

"This book appears in the Information Science and Statistics Series commissioned by the publishers. … The book appears to have been designed for course teaching, but obviously contains material that readers interested in self-study can use. It is certainly structured for easy use. … For course teachers there is ample backing which includes some 400 exercises. … it does contain important material which can be easily followed without the reader being confined to a pre-determined course of study." (W. R. Howard, Kybernetes, Vol. 36 (2), 2007)

"Bishop (Microsoft Research, UK) has prepared a marvelous book that provides a comprehensive, 700-page introduction to the fields of pattern recognition and machine learning. Aimed at advanced undergraduates and first-year graduate students, as well as researchers and practitioners, the book assumes knowledge of multivariate calculus and linear algebra … . Summing Up: Highly recommended. Upper-division undergraduates through professionals." (C. Tappert, CHOICE, Vol. 44 (9), May, 2007)

"The book is structured into 14 main parts and 5 appendices. … The book is aimed at PhD students, researchers and practitioners. It is well-suited for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bio-informatics. Extensive support is provided for course instructors, including more than 400 exercises, lecture slides and a great deal of additional material available at the book’s web site … ." (Ingmar Randvee, Zentralblatt MATH, Vol. 1107 (9), 2007)

"This new textbook by C. M. Bishop is a brilliant extension of his former book ‘Neural Networks for Pattern Recognition’. It is written for graduate students or scientists doing interdisciplinary work in related fields. … In summary, this textbook is an excellent introduction to classical pattern recognition and machine learning (in the sense of parameter estimation). A large number of very instructive illustrations adds to this value." (H. G. Feichtinger, Monatshefte für Mathematik, Vol. 151 (3), 2007)

"Author aims this text at advanced undergraduates, beginning graduate students, and researchers new to machine learning and pattern recognition. … Pattern Recognition and Machine Learning provides excellent intuitive descriptions and appropriate-level technical details on modern pattern recognition and machine learning. It can be used to teach a course or for self-study, as well as for a reference. … I strongly recommend it for the intended audience and note that Neal (2007) also has given this text a strong review to complement its strong sales record." (Thomas Burr, Journal of the American Statistical Association, Vol. 103 (482), June, 2008)

"This accessible monograph seeks to provide a comprehensive introduction to the fields of pattern recognition and machine learning. It presents a unified treatment of well-known statistical pattern recognition techniques. … The book can be used by advanced undergraduates and graduate students … . The illustrative examples and exercises proposed at the end of each chapter are welcome … . The book, which provides several new views, developments and results, is appropriate for both researchers and students who work in machine learning … ." (L. State, ACM Computing Reviews, October, 2008)

"Chris Bishop’s … technical exposition that is at once lucid and mathematically rigorous. … In more than 700 pages of clear, copiously illustrated text, he develops a common statistical framework that encompasses … machine learning. … it is a textbook, with a wide range of exercises, instructions to tutors on where to go for full solutions, and the color illustrations that have become obligatory in undergraduate texts. … its clarity and comprehensiveness will make it a favorite desktop companion for practicing data analysts." (H. Van Dyke Parunak, ACM Computing Reviews, Vol. 49 (3), March, 2008)

From the Back Cover

The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.

This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information.

Christopher M. Bishop is Deputy Director of Microsoft Research Cambridge, and holds a Chair in Computer Science at the University of Edinburgh. He is a Fellow of Darwin College Cambridge, a Fellow of the Royal Academy of Engineering, and a Fellow of the Royal Society of Edinburgh. His previous textbook "Neural Networks for Pattern Recognition" has been widely adopted.

Coming soon:

*For students, worked solutions to a subset of exercises available on a public web site (for exercises marked "www" in the text)

*For instructors, worked solutions to remaining exercises from the Springer web site

*Lecture slides to accompany each chapter

*Data sets available for download

See all Product description


Customer reviews

Top customer reviews

on 12 May 2017
Format: Hardcover|Verified Purchase
0Comment|Was this review helpful to you?YesNoReport abuse
on 28 May 2015
Format: Hardcover|Verified Purchase
0Comment| 13 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 28 May 2016
Format: Paperback|Verified Purchase
0Comment| One person found this helpful. Was this review helpful to you?YesNoReport abuse
on 31 October 2013
Format: Hardcover|Verified Purchase
0Comment| 2 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 27 May 2017
Format: Hardcover
0Comment|Was this review helpful to you?YesNoReport abuse
on 27 June 2013
Format: Hardcover|Verified Purchase
0Comment| 4 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 5 March 2009
Format: Hardcover
0Comment| 10 people found this helpful. Was this review helpful to you?YesNoReport abuse
on 8 October 2015
Format: Paperback|Verified Purchase
0Comment| 5 people found this helpful. Was this review helpful to you?YesNoReport abuse

Would you like to see more reviews about this item?

Pages with related products. See and discover other items: neural networks, probability and statistics, data mining, deep learning, earth science

Where's My Stuff?

Delivery and Returns

Need Help?