or
Sign in to turn on 1-Click ordering.
Trade in Yours
For a £19.73 Gift Card
Trade in
More Buying Choices
Have one to sell? Sell yours here
Sorry, this item is not available in
Image not available for
Colour:
Image not available

 

Graphene: A New Paradigm in Condensed Matter and Device Physics [Hardcover]

E. L. Wolf

Price: £65.00 & FREE Delivery in the UK. Details
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Only 2 left in stock (more on the way).
Dispatched from and sold by Amazon. Gift-wrap available.
Want it tomorrow, 20 Sep.? Choose Express delivery at checkout. Details

Formats

Amazon Price New from Used from
Kindle Edition £55.80  
Hardcover £65.00  
Trade In this Item for up to £19.73
Trade in Graphene: A New Paradigm in Condensed Matter and Device Physics for an Amazon Gift Card of up to £19.73, which you can then spend on millions of items across the site. Trade-in values may vary (terms apply). Learn more

Book Description

7 Nov 2013 0199645868 978-0199645862
The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law.

The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The lattice symmetry further implies a two-component wave-function, which has a practical effect of cancelling direct backscattering of carriers. The resulting high carrier mobility allows observation of the Quantum Hall Effect at room temperature, unique to Graphene. The material is two-dimensional, but in sizes micrometers nearly to meters displays great tensile strength but vanishing resistance to bending.

The book reviews theoretical predictions of excessive atomic vibrational motion, tied to the dimensionality. As explained, these predictions seem not of practical consequence, and such effects are unobservable in samples up to nearly one meter size. The disintegration temperature of this refractory material is estimated as 4900K, certainly higher than the measured sublimation temperature of graphite, 3900K. As explained, applications of Graphene come in classes that range from additives to composite materials to field effect transistor elements capable of extremely high frequency operation. The classes of applications correlate with differing methods of fabrication, from inexpensive chemical exfoliations of graphite, to chemical vapour deposition on catalytic substrates as Cu and Ni, at temperatures around 1300K. The book reviews potential applications within existing electronics, to include interconnect wires, flash-memory elements, and high frequency field effect transistors. The chance to supplant the dominant CMOS family of silicon logic devices is assessed.

Customers Who Viewed This Item Also Viewed


Product details


More About the Author

Discover books, learn about writers, and more.

Product Description

Review

This book on graphene gives an up-to-date account of this academically interesting but technologically useful material. It covers nearly every aspect of the subject. While the book has a broad coverage, the discussion is deep and thorough. Only basic knowledge in quantum mechanics is needed in reading the book. It can be used as a textbook for advanced undergraduate and graduate students, or as a general reference for researchers in this field. Researchers will find the bibliography at the end of the book very useful. I highly recommend this book to any person who is interested in graphene. (Kwok-Wai Ng, University of Kentucky)

About the Author

E. L. Wolf is a Fellow of the American Physical Society. His research in the area of condensed matter physics contributed strongly to understanding of superconductive tunnelling junctions and the superconducting proximity effect. Dr. Wolf is author of more than 100 refereed research papers and, more recently, of five monographs in areas related to nanotechnology as well as to superconductive electron tunnelling spectroscopy. Dr. Wolf has held positions in industry, two years as Program Director at the National Science Foundation, and academic appointments at the Ames Laboratory of the US Dept. of Energy as well as at Polytechnic Institute of New York University.

Inside This Book (Learn More)
Browse Sample Pages
Front Cover | Copyright | Table of Contents | Excerpt | Index
Search inside this book:

Customer Reviews

There are no customer reviews yet.
5 star
4 star
3 star
2 star
1 star

Customer Discussions

This product's forum
Discussion Replies Latest Post
No discussions yet

Ask questions, Share opinions, Gain insight
Start a new discussion
Topic:
First post:
Prompts for sign-in
 

Search Customer Discussions
Search all Amazon discussions
   


Look for similar items by category


Feedback