or
Sign in to turn on 1-Click ordering.
Trade in Yours
For a 11.00 Gift Card
Trade in
More Buying Choices
Have one to sell? Sell yours here
Sorry, this item is not available in
Image not available for
Colour:
Image not available

 
Tell the Publisher!
Id like to read this book on Kindle

Don't have a Kindle? Get your Kindle here, or download a FREE Kindle Reading App.

Fundamentals of Spacecraft Attitude Determination and Control (Space Technology Library) [Hardcover]

F. Landis Markley , John L. Crassidis

RRP: 67.99
Price: 59.70 & FREE Delivery in the UK. Details
You Save: 8.29 (12%)
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Only 2 left in stock (more on the way).
Dispatched from and sold by Amazon. Gift-wrap available.
Want it tomorrow, 30 Aug.? Choose Express delivery at checkout. Details

Formats

Amazon Price New from Used from
Hardcover 59.70  
Trade In this Item for up to 11.00
Trade in Fundamentals of Spacecraft Attitude Determination and Control (Space Technology Library) for an Amazon Gift Card of up to 11.00, which you can then spend on millions of items across the site. Trade-in values may vary (terms apply). Learn more

Book Description

1 Jun 2014 1493908014 978-1493908011 2014

This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice and also provides prototype algorithms that are readily available on the author's website.

Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitude dynamics including Jacobian elliptical functions. It is the first known book to provide detailed derivations and explanations of state attitude determination and gives readers real-world examples from actual working spacecraft missions. The subject matter is chosen to fill the void of existing textbooks and treatises, especially in state and dynamics attitude determination. MATLAB code of all examples will be provided through an external website.


Customers Who Viewed This Item Also Viewed


Product details


More About the Authors

Discover books, learn about writers, and more.

Product Description

From the Back Cover

This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice, and also provides prototype algorithms that are readily available on the author’s website.

Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics, and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitude dynamics including Jacobian elliptical functions. It is the first known book to provide detailed derivations and explanations of state attitude determination, and gives readers real-world examples from actual working spacecraft missions. The subject matter is chosen to fill the void of existing textbooks and treatises, especially in state and dynamics attitude determination. MATLAB code of all examples will be provided through an external website.

About the Author

Dr. F. Landis Markley has been a leader in spacecraft attitude estimation as well as one of the most important mission engineers. He joined the Computer Sciences Corporation in 1974 and established himself as an expert on all aspects of spacecraft attitude mission support. He moved to the U. S. Naval Research Laboratory in 1978 and to NASA Goddard Space Flight Center in 1985. Since 2010, he has been Aerospace Engineer Emeritus in Goddard's Attitude Control Systems Engineering Branch. He has supported more than twenty space missions, most notably the Hubble Space Telescope, the Tropical Rainfall Measuring Mission and the Wilkinson Microwave Anisotropy Probe. Dr. Markley is the author of many classic papers in spacecraft attitude estimation, dynamics, and control. He was one of the principal contributors to the book “Spacecraft Attitude Determination and Control” (Springer, 1978), which has been essential to the education of many astronautical engineers. He was elected Fellow of the AIAA in 1998 and of the AAS in 2007 and has been a Goddard Senior Fellow since 2000. He is a recipient of the NASA Exceptional Service Medal (1994 and 2005), the AIAA Mechanics and Control of Flight Award (1998), and the AAS Dirk Brouwer Award (2005).

Dr. John L. Crassidis is the CUBRC Professor in Space Situational Awareness of Mechanical and Aerospace Engineering at the University of Buffalo (UB). Currently, he is the Director of UB's Center for Multisource Information Fusion. Before joining UB in 2001, he held previous academic appointments at Catholic University of America (1996-1998) and Texas A&M University (1998-2000). He also held a position as a NASA Postdoctoral Research Fellow at Goddard Space Flight Center (1996-1998). While at NASA-Goddard he worked on a number of mission projects, such as the Tropical Rainfall Measurement Mission, the Geostationary Operational Environmental Satellite, and the Wilkinson Microwave Anisotropy Probe. He is first author to the book “Optimal Estimation of Dynamic Systems,” which is currently in its second edition. He was elected Fellow of the AAS in 2014 and Associate Fellow of the AIAA in 2002. He is a recipient of the AIAA Mechanics and Control of Flight Award (2012) and several teaching awards. 


Inside This Book (Learn More)
Browse Sample Pages
Front Cover | Copyright | Table of Contents | Excerpt | Index
Search inside this book:

Sell a Digital Version of This Book in the Kindle Store

If you are a publisher or author and hold the digital rights to a book, you can sell a digital version of it in our Kindle Store. Learn more

Customer Reviews

There are no customer reviews yet on Amazon.co.uk.
5 star
4 star
3 star
2 star
1 star
Most Helpful Customer Reviews on Amazon.com (beta)
Amazon.com: 5.0 out of 5 stars  1 review
5.0 out of 5 stars Excellent book, long awaited 22 July 2014
By Dr. Hari Hablani, Professor - Published on Amazon.com
Format:Hardcover|Verified Purchase
Excellent book, long awaited; the authors share their life-long experiences, analyses in the book. The community will cherish the book.
Was this review helpful?   Let us know

Customer Discussions

This product's forum
Discussion Replies Latest Post
No discussions yet

Ask questions, Share opinions, Gain insight
Start a new discussion
Topic:
First post:
Prompts for sign-in
 

Search Customer Discussions
Search all Amazon discussions
   


Look for similar items by category


Feedback