Shop now Shop now Shop now Shop Black Friday Deals Week in Fashion Cloud Drive Photos Shop now Amazon Fire TV Shop now DIYED Shop now Shop Fire Shop Kindle Paperwhite Listen in Prime Shop Now Shop now

Buy New

Sign in to turn on 1-Click ordering.
Buy Used
Used - Like New See details
Price: £12.57

More Buying Choices
Have one to sell? Sell yours here
Tell the Publisher!
Iíd like to read this book on Kindle

Don't have a Kindle? Get your Kindle here, or download a FREE Kindle Reading App.

Fundamentals of Astrodynamics (Dover Books on Aeronautical Engineering) [Paperback]

R.R. Bate , etc.
4.4 out of 5 stars  See all reviews (10 customer reviews)
Price: £16.99 Eligible for FREE UK Delivery Details
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
Only 10 left in stock (more on the way).
Dispatched from and sold by Amazon. Gift-wrap available.
Want it tomorrow, 26 Nov.? Choose Express delivery at checkout. Details
‹  Return to Product Overview

Table of Contents

Preface Chapter 1 TWO-BODY ORBITAL MECHANICS 1.1 Historical Background and Basic Laws 1.2 The N-Body Problem 1.3 The Two-Body Problem 1.4 Constants of the Motion 1.5 The Trajectory Equation 1.6 Relating E and h to the Geometry of an Orbit 1.7 The Elliptical Orbit 1.8 The Circular Orbit 1.9 The Parabolic Orbit 1.10 The Hyperbolic Orbit 1.11 Canonical Units Exercises List of References Chapter 2 ORBIT DETERMINATION FROM OBSERVATIONS 2.1 Historical Background 2.2 Coordinate Systems 2.3 Classical Orbital Elements 2.4 Determining the Orbital Elements from r and v 2.5 Determining r and v from the Orbital Elements 2.6 Coordinate Transformations 2.7 Orbit Determination from a Single Radar Observation 2.8 SEZ to IJK Transformation Using an Ellipsoid Earth Model 2.9 The Measurement of Time 2.10 Orbit Determination from Three Position Vectors 2.11 Orbit Determination from Optical Sightings 2.12 Improving a Preliminary Orbit by Differential Correction 2.13 Space Survelliance 2.14 Type and Location of Sensors 2.15 Ground Track of a Satellite Exercises List of References Chapter 3 BASIC ORBITAL MANEUVERS 3.1 Low Altitiude Earth Orbits 3.2 High Altitude Earth Orbits 3.3 In-Plane Orbit Changes 3.4 Out-Of-Plane Orbit Changes Exercises List of References Chapter 4 POSITION AND VELOCITY AS A FUNCTION OF TIME 4.1 Historical Background 4.2 Time-of-Flight as a Function of Eccentric Anomaly 4.3 A Universal Fomulation for Time-of-Flight 4.4 The Prediction Problem 4.5 Implementing the Universal Variable Formulation 4.6 Classical Formulations of the Kepler Problem Exercises List of References Chapter 5 ORBIT DETERMINATION FROM TWO POSITIONS AND TIME 5.1 Historical Background 5.2 The Gauss Problem - General Methods of Solution 5.3 Solution of the Gauss Problem via Universal Variables 5.4 The p-Iteration Method 5.5 The Gauss Problem Using the f and g Series 5.6 The Original Gauss Method 5.7 Practical Applications of the Gauss Problem - Intercept and Rendezvous 5.8 Determination of Orbit from Sighting Directions at Station Exercises List of References Chapter 6 BALLISTIC MISSILE TRAJECTORIES 6.1 Historical Background 6.2 The General Ballistic Missile Problem 6.3 Effect of Launching Errors on Range 6.4 The Effect of Earth Rotation Exercises List of References Chapter 7 LUNAR TRAJECTORIES 7.1 Historical Background 7.2 The Earth-Moon System 7.3 Simple Earth-Moon Trajectories 7.4 The Patched-Conic Approximation 7.5 Non-Coplanar Lunar Trajectories Exercises List of References Chapter 8 INTERPLANETARY TRAJECTORIES 8.1 Historical Background 8.2 The Solar System 8.3 The Patched-Conic Approximation 8.4 Non-Coplanar Interplanetary Trajectories Exercises List of References Chapter 9 PERTURBATIONS 9.1 Introduction and Historical Background 9.2 Cowell's Method 9.3 Encke's Method 9.4 Variation of Parameters or Elements 9.5 Comments on Integration Schemes and Errors 9.6 Numerical Integration Methods 9.7 Analytic Formulation of Perturbative Accelerations Exercises List of References Appendix A Astrodynamic Constants Appendix B Miscellaneous Constants and Conversions Appendix C Vector Review Appendix D Suggested Projects Index

‹  Return to Product Overview